login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052788
Number of rooted trees with n nodes and 5-colored non-root nodes.
3
0, 1, 5, 40, 360, 3570, 37476, 410490, 4635330, 53589045, 631115140, 7544876956, 91321148575, 1116879203135, 13781214640630, 171350293212360, 2144719821588471, 27001925967762160, 341717698703959875
OFFSET
0,3
COMMENTS
Previous name was: A simple grammar.
Number of rooted trees with 5-colored non-root nodes. - Christian G. Bower, Sep 07 2002
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 13.78565111008468519893032491082181549507446564..., c = 0.0809706405011433830276324977466118885837... . - Vaclav Kotesovec, Aug 26 2014
G.f. A(x) satisfies: A(x) = x*exp(5*Sum_{k>=1} A(x^k)/k). - Ilya Gutkovskiy, Mar 19 2018
MAPLE
spec := [S, {B=Set(S), S=Prod(Z, B, B, B, B, B)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
with(numtheory):
a:= proc(n) option remember; `if`(n<2, n, (add(add(d*
a(d), d=divisors(j))*a(n-j)*5, j=1..n-1))/(n-1))
end:
seq(a(n), n=0..25); # Vaclav Kotesovec, Aug 26 2014 after Alois P. Heinz
MATHEMATICA
a[n_] := a[n] = If[n<2, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j]*5, {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, adapted from Maple *)
CROSSREFS
Column k=5 of A242249.
Sequence in context: A052798 A137973 A371520 * A213104 A219560 A349362
KEYWORD
easy,nonn,eigen
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name from Vaclav Kotesovec, Aug 26 2014
STATUS
approved