The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052791 3^(n-3)*n*(n-1)*(n-2). 1
 0, 0, 0, 6, 72, 540, 3240, 17010, 81648, 367416, 1574640, 6495390, 25981560, 101328084, 386889048, 1450833930, 5356925280, 19514513520, 70252248672, 250273635894, 883318714920, 3091615502220, 10739295955080, 37050571045026, 127030529297232, 433058622604200, 1468633589701200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The number of surjective functions f:{1,2,...,n}->{1,2,3} with a designated pre-image of 1, 2, and 3. LINKS Table of n, a(n) for n=0..26. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 748 Index entries for linear recurrences with constant coefficients, signature (12,-54,108,-81). FORMULA E.g.f.: x^3*exp(x)^3 Recurrence: {a(1)=0, a(2)=0, a(3)=6, (-3*n-3)*a(n)+(-2+n)*a(n+1)}. a(n) = n!*sum(i+j+k=n, ijk/(i!j!k!)) - Benoit Cloitre, Nov 11 2004 G.f.: 6*x^3 / (3*x-1)^4. - Colin Barker, Jun 04 2013 MAPLE spec := [S, {B=Set(Z), S=Prod(Z, Z, Z, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); MATHEMATICA Range[0, 20]! CoefficientList[Series[(x Exp[x])^3, {x, 0, 20}], x] LinearRecurrence[{12, -54, 108, -81}, {0, 0, 0, 6}, 30] (* Harvey P. Dale, Sep 02 2022 *) PROG (PARI) a(n)=3^(n-3)*n*(n-1)*(n-2); /* Joerg Arndt, Sep 16 2012 */ CROSSREFS Cf. A001815. Sequence in context: A282817 A274955 A177468 * A334327 A129532 A151719 Adjacent sequences: A052788 A052789 A052790 * A052792 A052793 A052794 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS Edited by N. J. A. Sloane, Dec 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 23:50 EDT 2024. Contains 373391 sequences. (Running on oeis4.)