login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052791
3^(n-3)*n*(n-1)*(n-2).
2
0, 0, 0, 6, 72, 540, 3240, 17010, 81648, 367416, 1574640, 6495390, 25981560, 101328084, 386889048, 1450833930, 5356925280, 19514513520, 70252248672, 250273635894, 883318714920, 3091615502220, 10739295955080, 37050571045026, 127030529297232, 433058622604200, 1468633589701200
OFFSET
0,4
COMMENTS
The number of surjective functions f:{1,2,...,n}->{1,2,3} with a designated pre-image of 1, 2, and 3.
FORMULA
E.g.f.: x^3*exp(x)^3
Recurrence: {a(1)=0, a(2)=0, a(3)=6, (-3*n-3)*a(n)+(-2+n)*a(n+1)}.
a(n) = n!*sum(i+j+k=n, ijk/(i!j!k!)) - Benoit Cloitre, Nov 11 2004
G.f.: 6*x^3 / (3*x-1)^4. - Colin Barker, Jun 04 2013
MAPLE
spec := [S, {B=Set(Z), S=Prod(Z, Z, Z, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Range[0, 20]! CoefficientList[Series[(x Exp[x])^3, {x, 0, 20}], x]
LinearRecurrence[{12, -54, 108, -81}, {0, 0, 0, 6}, 30] (* Harvey P. Dale, Sep 02 2022 *)
PROG
(PARI) a(n)=3^(n-3)*n*(n-1)*(n-2); /* Joerg Arndt, Sep 16 2012 */
CROSSREFS
Cf. A001815.
Sequence in context: A282817 A274955 A177468 * A334327 A129532 A151719
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Edited by N. J. A. Sloane, Dec 24 2010
STATUS
approved