The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177468 Expansion of g.f.: (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5) 0
 1, 6, 72, 463, 4030, 28908, 231393, 1733366, 13499224, 102723495, 792454734, 6063888364, 46624820793, 357473932822, 2745399810920, 21063557869407, 161702118409342, 1240928795315404, 9525079068251761, 73103241532364950 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26. LINKS Table of n, a(n) for n=1..20. S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs Index entries for linear recurrences with constant coefficients, signature (5, 30, -69, -31, 22). FORMULA (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5) a(0)=1, a(1)=6, a(2)=72, a(3)=463, a(4)=4030, a(n)=5*a(n-1)+ 30*a(n-2)- 69*a(n-3)-31*a(n-4)+22*a(n-5). - Harvey P. Dale, Sep 09 2014 MATHEMATICA CoefficientList[Series[(1+x+12x^2-8x^3)/(1-5x-30x^2+69x^3+31x^4-22x^5), {x, 0, 20}], x] (* or *) LinearRecurrence[{5, 30, -69, -31, 22}, {1, 6, 72, 463, 4030}, 20] (* Harvey P. Dale, Sep 09 2014 *) CROSSREFS Sequence in context: A361571 A282817 A274955 * A052791 A334327 A129532 Adjacent sequences: A177465 A177466 A177467 * A177469 A177470 A177471 KEYWORD nonn AUTHOR Signy Olafsdottir (signy06(AT)ru.is), May 09 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 06:28 EDT 2024. Contains 372772 sequences. (Running on oeis4.)