login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177468
Expansion of g.f.: (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5)
0
1, 6, 72, 463, 4030, 28908, 231393, 1733366, 13499224, 102723495, 792454734, 6063888364, 46624820793, 357473932822, 2745399810920, 21063557869407, 161702118409342, 1240928795315404, 9525079068251761, 73103241532364950
OFFSET
1,2
REFERENCES
S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
FORMULA
(1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5)
a(0)=1, a(1)=6, a(2)=72, a(3)=463, a(4)=4030, a(n)=5*a(n-1)+ 30*a(n-2)- 69*a(n-3)-31*a(n-4)+22*a(n-5). - Harvey P. Dale, Sep 09 2014
MATHEMATICA
CoefficientList[Series[(1+x+12x^2-8x^3)/(1-5x-30x^2+69x^3+31x^4-22x^5), {x, 0, 20}], x] (* or *) LinearRecurrence[{5, 30, -69, -31, 22}, {1, 6, 72, 463, 4030}, 20] (* Harvey P. Dale, Sep 09 2014 *)
CROSSREFS
Sequence in context: A361571 A282817 A274955 * A052791 A334327 A129532
KEYWORD
nonn
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
STATUS
approved