login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177469
Expansion of (1-x+38*x^2-72*x^3-8*x^4+30*x^5) / (1-8*x -66*x^2 +280*x^3 +178*x^4 -532*x^5 -84*x^6 +108*x^7).
1
1, 7, 160, 1390, 19534, 202528, 2495596, 27700276, 326878816, 3718923448, 43234331704, 496209443344, 5738582748400, 66066860825968, 762649926287584, 8789761525471360, 101400012042254944, 1169112414739169152, 13483991218981408192, 155487427811428691968
OFFSET
0,2
LINKS
S. Kitaev, A. Burstein and T. Mansour, Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
Index entries for linear recurrences with constant coefficients, signature (8, 66, -280, -178, 532, 84, -108).
FORMULA
G.f.: (1-x+38*x^2-72*x^3-8*x^4+30*x^5) / (1-8*x -66*x^2 +280*x^3 +178*x^4 -532*x^5 -84*x^6 +108*x^7).
a(0)=1, a(1)=7, a(2)=160, a(3)=1390, a(4)=19534, a(5)=202528, a(6)=2495596, a(n)=8*a(n-1) +66*a(n-2) -280*a(n-3) -178*a(n-4) +532*a(n-5)+ 84*a(n-6)-108*a(n-7). - Harvey P. Dale, Jul 04 2011
MAPLE
f:= gfun:-rectoproc({a(0)=1, a(1)=7, a(2)=160, a(3)=1390, a(4)=19534, a(5)=202528, a(6)=2495596, a(n)=8*a(n-1) +66*a(n-2) -280*a(n-3) -178*a(n-4) +532*a(n-5)+ 84*a(n-6)-108*a(n-7)}, a(n), remember):
seq(f(n), n=0..30); # Robert Israel, Dec 21 2015
MATHEMATICA
CoefficientList[Series[(1-x+38x^2-72x^3-8x^4+30x^5)/ (1-8x-66x^2+ 280x^3+ 178x^4- 532x^5- 84x^6+108x^7), {x, 0, 20}], x] (* or *) LinearRecurrence[ {8, 66, -280, -178, 532, 84, -108}, {1, 7, 160, 1390, 19534, 202528, 2495596}, 21] (* Harvey P. Dale, Jul 04 2011 *)
PROG
(Magma) I:=[1, 7, 160, 1390, 19534, 202528, 2495596]; [n le 7 select I[n] else 8*Self(n-1)+66*Self(n-2)-280*Self(n-3)-178*Self(n-4)+532*Self(n-5)+84*Self(n-6)-108*Self(n-7): n in [1..30]]; // Vincenzo Librandi, Dec 22 2015
CROSSREFS
Sequence in context: A153713 A137995 A177779 * A121786 A316947 A083153
KEYWORD
nonn
AUTHOR
Signy Olafsdottir (signy06(AT)ru.is), May 09 2010
STATUS
approved