login
A153713
Greatest number m such that the fractional part of Pi^A137994(n) <= 1/m.
6
7, 159, 270, 307, 744, 757, 796, 1079, 1226, 7804, 13876, 62099, 70718, 86902, 154755
OFFSET
1,1
FORMULA
a(n) = floor(1/fract(Pi^A137994(n))), where fract(x) = x-floor(x).
EXAMPLE
a(2)=159 since 1/160<fract(Pi^A137994(2))=fract(Pi^3)=0.0062766...<=1/159.
MATHEMATICA
A137994 = {1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885};
Table[fp = FractionalPart[Pi^A137994[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A137994]}] (* Robert Price, Mar 26 2019 *)
KEYWORD
nonn,more
AUTHOR
Hieronymus Fischer, Jan 06 2009
EXTENSIONS
a(14)-a(15) from Robert Price, Mar 26 2019
STATUS
approved