|
|
A153713
|
|
Greatest number m such that the fractional part of Pi^A137994(n) <= 1/m.
|
|
6
|
|
|
7, 159, 270, 307, 744, 757, 796, 1079, 1226, 7804, 13876, 62099, 70718, 86902, 154755
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = floor(1/fract(Pi^A137994(n))), where fract(x) = x-floor(x).
|
|
EXAMPLE
|
a(2)=159 since 1/160<fract(Pi^A137994(2))=fract(Pi^3)=0.0062766...<=1/159.
|
|
MATHEMATICA
|
A137994 = {1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885};
Table[fp = FractionalPart[Pi^A137994[[n]]]; m = Floor[1/fp];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|