login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5)
0

%I #5 Aug 01 2015 09:00:07

%S 1,6,72,463,4030,28908,231393,1733366,13499224,102723495,792454734,

%T 6063888364,46624820793,357473932822,2745399810920,21063557869407,

%U 161702118409342,1240928795315404,9525079068251761,73103241532364950

%N Expansion of g.f.: (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5)

%D S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.

%H S. Kitaev, A. Burstein and T. Mansour. <a href="http://www.ru.is/kennarar/sergey/index_files/Papers/burkitman_PUMA.pdf"> Counting independent sets in certain classes of (almost) regular graphs </a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, 30, -69, -31, 22).

%F (1+x+12*x^2-8*x^3)/(1-5*x-30*x^2+69*x^3+31*x^4-22*x^5)

%F a(0)=1, a(1)=6, a(2)=72, a(3)=463, a(4)=4030, a(n)=5*a(n-1)+ 30*a(n-2)- 69*a(n-3)-31*a(n-4)+22*a(n-5). - _Harvey P. Dale_, Sep 09 2014

%t CoefficientList[Series[(1+x+12x^2-8x^3)/(1-5x-30x^2+69x^3+31x^4-22x^5),{x,0,20}],x] (* or *) LinearRecurrence[{5,30,-69,-31,22},{1,6,72,463,4030},20] (* _Harvey P. Dale_, Sep 09 2014 *)

%K nonn

%O 1,2

%A Signy Olafsdottir (signy06(AT)ru.is), May 09 2010