login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

3^(n-3)*n*(n-1)*(n-2).
2

%I #33 Sep 02 2022 17:54:01

%S 0,0,0,6,72,540,3240,17010,81648,367416,1574640,6495390,25981560,

%T 101328084,386889048,1450833930,5356925280,19514513520,70252248672,

%U 250273635894,883318714920,3091615502220,10739295955080,37050571045026,127030529297232,433058622604200,1468633589701200

%N 3^(n-3)*n*(n-1)*(n-2).

%C The number of surjective functions f:{1,2,...,n}->{1,2,3} with a designated pre-image of 1, 2, and 3.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=748">Encyclopedia of Combinatorial Structures 748</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (12,-54,108,-81).

%F E.g.f.: x^3*exp(x)^3

%F Recurrence: {a(1)=0, a(2)=0, a(3)=6, (-3*n-3)*a(n)+(-2+n)*a(n+1)}.

%F a(n) = n!*sum(i+j+k=n, ijk/(i!j!k!)) - _Benoit Cloitre_, Nov 11 2004

%F G.f.: 6*x^3 / (3*x-1)^4. - _Colin Barker_, Jun 04 2013

%p spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t Range[0, 20]! CoefficientList[Series[(x Exp[x])^3, {x, 0, 20}], x]

%t LinearRecurrence[{12,-54,108,-81},{0,0,0,6},30] (* _Harvey P. Dale_, Sep 02 2022 *)

%o (PARI) a(n)=3^(n-3)*n*(n-1)*(n-2); /* _Joerg Arndt_, Sep 16 2012 */

%Y Cf. A001815.

%K easy,nonn

%O 0,4

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E Edited by _N. J. A. Sloane_, Dec 24 2010