login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted trees with n nodes and 5-colored non-root nodes.
3

%I #41 Jan 13 2024 20:32:33

%S 0,1,5,40,360,3570,37476,410490,4635330,53589045,631115140,7544876956,

%T 91321148575,1116879203135,13781214640630,171350293212360,

%U 2144719821588471,27001925967762160,341717698703959875

%N Number of rooted trees with n nodes and 5-colored non-root nodes.

%C Previous name was: A simple grammar.

%C Number of rooted trees with 5-colored non-root nodes. - _Christian G. Bower_, Sep 07 2002

%H Vaclav Kotesovec, <a href="/A052788/b052788.txt">Table of n, a(n) for n = 0..870</a>

%H L. Foissy, <a href="https://arxiv.org/abs/1811.07572">Algebraic structures on typed decorated rooted trees</a>, arXiv:1811.07572 [math.RA], 2018-2021.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=745">Encyclopedia of Combinatorial Structures 745</a>.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F a(n) ~ c * d^n / n^(3/2), where d = 13.78565111008468519893032491082181549507446564..., c = 0.0809706405011433830276324977466118885837... . - _Vaclav Kotesovec_, Aug 26 2014

%F G.f. A(x) satisfies: A(x) = x*exp(5*Sum_{k>=1} A(x^k)/k). - _Ilya Gutkovskiy_, Mar 19 2018

%p spec := [S,{B=Set(S),S=Prod(Z,B,B,B,B,B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n<2, n, (add(add(d*

%p a(d), d=divisors(j))*a(n-j)*5, j=1..n-1))/(n-1))

%p end:

%p seq(a(n), n=0..25); # _Vaclav Kotesovec_, Aug 26 2014 after Alois P. Heinz

%t a[n_] := a[n] = If[n<2, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j]*5, {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Feb 24 2016, adapted from Maple *)

%Y Column k=5 of A242249.

%K easy,nonn,eigen

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E New name from _Vaclav Kotesovec_, Aug 26 2014