OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..500
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,k-1) * binomial(6*k,k) / (5*k+1).
a(n) = (-1)^(n+1)* F([7/6, 4/3, 3/2, 5/3, 11/6, 1-n], [7/5, 8/5, 9/5, 2, 11/5], 6^6/5^5), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 15 2021
a(n) ~ 43531^(n + 1/2) / (72 * sqrt(3*Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Nov 17 2021
MAPLE
a:= n-> coeff(series(RootOf(1+x*A^6/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = 1 + x A[x]^6/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 15 2021
STATUS
approved