OFFSET
0,2
COMMENTS
Partial sums of A002295.
In general, for m > 1, Sum_{k=0..n} binomial(m*k,k) / ((m-1)*k + 1) ~ m^(m*(n+1) + 1/2) / (sqrt(2*Pi) * (m^m - (m-1)^(m-1)) * n^(3/2) * (m-1)^((m-1)*n + 3/2)). - Vaclav Kotesovec, Jul 28 2021
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..856
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^5 * A(x)^6.
a(n) ~ 2^(6*n + 6) * 3^(6*n + 13/2) / (43531 * sqrt(Pi) * n^(3/2) * 5^(5*n + 3/2)). - Vaclav Kotesovec, Jul 28 2021
MATHEMATICA
Table[Sum[Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 - x) + x (1 - x)^5 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
PROG
(PARI) a(n) = sum(k=0, n, binomial(6*k, k)/(5*k+1)); \\ Michel Marcus, Jul 28 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 28 2021
STATUS
approved