login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349585
E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x).
6
1, 1, -2, 8, -59, 642, -9112, 158839, -3279880, 78250188, -2117569181, 64082989720, -2144319848772, 78609355884893, -3133061858717806, 134884905211588892, -6238095343894356675, 308427209934965151158, -16234730389499986865092, 906409067599064528054343
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} (k-1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = exp( LambertW(1 - exp(-x)) ).
G.f.: Sum_{k>=0} (-k+1)^(k-1) * x^k/Product_{j=1..k} (1 + j*x).
a(n) ~ -(-1)^n * sqrt(1 + exp(1)) * n^(n-1) / (exp(n+1) * (log(1 + exp(1)) - 1)^(n - 1/2)). - Vaclav Kotesovec, Dec 05 2021
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
(m-1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> (-1)^(n-1)*b(n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 03 2022
MATHEMATICA
a[n_] := (-1)^(n - 1) * Sum[If[k == 1, 1, (k - 1)^(k - 1)]*StirlingS2[n, k], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Nov 23 2021 *)
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, (k-1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(1-exp(-x)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (-k+1)^(k-1)*x^k/prod(j=1, k, 1+j*x)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 22 2021
STATUS
approved