login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157312
G.f.: A(x) = exp(Sum_{n>=1} A157311(n)*x^n/n) = Product_{n>=1} (1 + A157311(n-1)*x^n).
2
1, 1, 1, 2, 5, 18, 84, 481, 3249, 25359, 224000, 2208441, 24019991, 285633470, 3685413373, 51271476627, 764944009086, 12182390286127, 206262410584138, 3699483818281188, 70067511789111404, 1397379232420943285
OFFSET
0,4
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 18*x^5 + 84*x^6 +...
where both the exponential:
A(x) = exp(x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 66*x^5/5 + 394*x^6/6 +...)
and the product:
A(x) = (1 + x)(1 + x^2)(1 + x^3)(1 + 4*x^4)(1 + 13*x^5)(1 + 66*x^6)*...
generate A(x) using the same coefficients (after initial term):
A157311=[1,1,1,4,13,66,394,2759,22005,198049,1979646,21776107,...].
CROSSREFS
Cf. A157311.
Sequence in context: A307773 A332776 A038720 * A175847 A089412 A058798
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2009
STATUS
approved