login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157314
G.f.: A(x) = exp( Sum_{n>=1} A157313(n)*x^n/n ) = 1/Product_{n>=1} (1 - A157313(n-1)*x^n).
1
1, 1, 2, 5, 16, 62, 298, 1700, 11448, 88622, 778532, 7636888, 82782697, 981775224, 12643542295, 175638751080, 2617558335383, 41650633309937, 704712768652527, 12632584581030449, 239150363847113653, 4767657035201958150
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 62*x^5 + 298*x^6 +...
where the exponential:
A(x) = exp(x + 3*x^2/2 + 10*x^3/3 + 43*x^4/4 + 216*x^5/5 + 1326*x^6/6 +...)
and the product:
1/A(x) = (1 - x)(1 - x^2)(1 - 3*x^3)(1 - 10*x^4)(1 - 43*x^5)(1 - 216*x^6)*...
generate A(x) using the same coefficients (after initial term):
A157313=[1,1,3,10,43,216,1326,9283,74667,672085,6730098,74031079,...].
CROSSREFS
Sequence in context: A138549 A210667 A144188 * A374073 A159603 A058117
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2009
STATUS
approved