The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A138549 Moment sequence of t^2 coefficient in det(tI-A) for random matrix A in USp(6). 2
 1, 1, 2, 5, 16, 62, 282, 1459, 8375, 52323, 350676, 2493846, 18659787, 145918295, 1186129168, 9978055080, 86545684565, 771571356565, 7051538798490, 65913863945775, 628919704903746, 6114899366942556, 60492393411513722 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let the random variable X be the coefficient of t^2 in the characteristic polynomial det(tI-A) of a random matrix in USp(6) (6x6 complex matrices that are unitary and symplectic). Then a(n) = E[X^n]. Let L_p(T) be the L-polynomial (numerator of the zeta function) of a genus 3 curve C. Under a generalized Sato-Tate conjecture, for almost all C, a(n) is the n-th moment of the coefficient of t^2 in L_p(t/sqrt(p)), as p varies. See A138550 for central moments. LINKS Table of n, a(n) for n=0..22. Kiran S. Kedlaya, Andrew V. Sutherland, Computing L-series of hyperelliptic curves, arXiv:0801.2778 [math.NT], 2008-2012; Algorithmic Number Theory Symposium--ANTS VIII, 2008. Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010. Nicholas M. Katz and Peter Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, AMS, 1999. FORMULA See Prop. 12 of first Kedlaya-Sutherland reference. EXAMPLE a(3) = 5 because E[X^3] = 5 for X the t^2 coeff of det(tI-A) in USp(6). CROSSREFS Cf. A138540, A138550, A138356. Sequence in context: A129578 A005387 A173469 * A210667 A144188 A157314 Adjacent sequences: A138546 A138547 A138548 * A138550 A138551 A138552 KEYWORD nonn AUTHOR Andrew V. Sutherland, Mar 24 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 11:59 EDT 2023. Contains 365531 sequences. (Running on oeis4.)