The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157311 G.f.: exp( Sum_{n>=1} a(n)*x^n/n ) = Product_{n>=1} (1 + a(n-1)*x^n). 3
 1, 1, 1, 4, 13, 66, 394, 2759, 22005, 198049, 1979646, 21776107, 261287398, 3396736175, 47553219799, 713298307974, 11412712029909, 194016104508454, 3492285524896921, 66353424973041500, 1327068107226627278 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n) = Sum_{d divides n, 1<=d<=n} -d*(-a(d-1))^(n/d) for n>0 with a(0)=1. Product_{n>=1} (1 + a(n-1)*x^n) = g.f. of A157312. EXAMPLE Define G(x) by the exponential: G(x) = exp(x + x^2/2 + 4*x^3/3 + 13*x^4/4 + 66*x^5/5 + 394*x^6/6 +...) then G(x) also equals the product: G(x) = (1 + x)(1 + x^2)(1 + x^3)(1 + 4*x^4)(1 + 13*x^5)(1 + 66*x^6)*...; where the coefficients in both expressions are the same (with offset) and G(x) is the g.f. of A157312: G(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 18*x^5 + 84*x^6 + 481*x^7 + 3249*x^8 +... PROG (PARI) {a(n)=if(n==0, 1, sumdiv(n, d, if(d>=1&d<=n, -d*(-a(d-1))^(n/d))))} (PARI) {a(n)=if(n==0, 1, n*polcoeff(1+sum(k=1, n, log(1+a(k-1)*x^k +x*O(x^n))), n))} (PARI) {a(n)=if(n==0, 1, n*polcoeff(sum(k=1, n, -sum(j=1, n\k, (-a(k-1))^j*x^(k*j)/j)+x*O(x^n)), n))} CROSSREFS Cf. A157312. Sequence in context: A222771 A052415 A129433 * A318600 A309900 A096805 Adjacent sequences: A157308 A157309 A157310 * A157312 A157313 A157314 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 05:31 EDT 2023. Contains 361577 sequences. (Running on oeis4.)