login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318600
a(1) = 1; a(n+1) = Sum_{d|n} (-1)^(n/d+1)*d*a(d).
1
1, 1, 1, 4, 13, 66, 394, 2759, 22053, 198481, 1984746, 21832207, 261986098, 3405819275, 47681467093, 715222006464, 11443552081333, 194540385382662, 3501726936689833, 66532811797106828, 1330656235940151698, 27943780954743188420, 614763181004328313035, 14139553163099551199806
OFFSET
1,4
LINKS
FORMULA
L.g.f.: log(Product_{n>=1} (1 + x^n)^a(n)) = Sum_{n>=1} a(n+1)*x^n/n.
MAPLE
f:= proc(n) option remember;
add((-1)^((n-1)/d+1)*d*procname(d), d = numtheory:-divisors(n-1))
end proc:
f(1):= 1:
map(f, [$1..30]); # Robert Israel, Aug 30 2018
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Sum[(-1)^((n - 1)/d + 1) d a[d] , {d, Divisors[n - 1]}]; Table[a[n], {n, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 29 2018
STATUS
approved