login
A318599
E.g.f. A(x) satisfies: A(x) = sin(x) + cos(x)*A(x)^2 with A(0)=1.
2
1, -1, -1, -11, -95, -1321, -22561, -474851, -11785535, -337650001, -10962505921, -397804232891, -15954963362975, -700861670953081, -33464274136282081, -1725656338796874131, -95578727098089100415, -5658893822397686566561, -356659432609686011399041, -23841281202421071709150571
OFFSET
0,4
LINKS
FORMULA
E.g.f.: A(x)=(1 + sqrt(1-2*sin(2*x))/(2*cos(x)).
a(n) = A122045(n) - A318007(n) for n >= 1.
MAPLE
S:= series((1 + sqrt(1-2*sin(2*x)))/(2*cos(x)), x, 51):
seq(coeff(S, x, j)*j!, j=0..50);
MATHEMATICA
m = 20; A[x_] = (1 + Sqrt[1 - 2 Sin[2x]] )/(2 Cos[x]); Range[0, m-1]! * CoefficientList[A[x] + O[x]^m, x] (* Jean-François Alcover, Apr 29 2019 *)
CROSSREFS
Sequence in context: A016203 A241606 A326349 * A347479 A051446 A271632
KEYWORD
sign
AUTHOR
Robert Israel, Aug 29 2018
STATUS
approved