Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #68 Jan 31 2024 09:47:42
%S 0,1,3,13,68,421,3015,24541,223884,2263381,25121075,303716281,
%T 3973432728,55931774473,842950049823,13543132571641,231076203767720,
%U 4172914800390601,79516457411189139,1594502063024173381,33564059780918830140,740003817243238436461,17053651856375402868743
%N a(n) = (n+1)*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
%C Numerator of convergent to BesselI(0,2)/BesselI(1,2) for which the continued fraction expansion is [1,2,3....,n]. - _Benoit Cloitre_, Mar 27 2003
%C Numerator of continued fraction C(n) minus denominator of continued fraction C(n), where C(n) = [ 1; 2,3,4,...n ]. - _Melvin Peralta_, Jan 17 2017
%H G. C. Greubel, <a href="/A058307/b058307.txt">Table of n, a(n) for n = 0..445</a> (terms n=0..100 from T. D. Noe)
%H Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, <a href="https://hal.archives-ouvertes.fr/hal-02865198">Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study</a>, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
%H C. Cannings, <a href="http://dx.doi.org/10.4236/am.2013.45105">The Stationary Distributions of a Class of Markov Chains</a>, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773.
%H S. Janson, <a href="https://doi.org/10.46298/dmtcs.520">A divergent generating function that can be summed and analysed analytically</a>, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
%H Russell Walsmith, <a href="/A058307/a058307.pdf">Cl-Chemy II</a>
%F From _Wouter Meeussen_, Feb 02 2001: (Start)
%F a(2*r+1) = Sum_{j=0..r} (binomial(r+j, r-j)*(r+j)!/(r-j)! - binomial(r + j, r-j-1)*(r+j+1)!/(r-j)!) and
%F a(2*r) = Sum_{j=0..r} (binomial(r+j+1, r-j)*(r+j+1)!/(r-j)! - binomial(r +j, r-j)*(r+j+1)!/(r-j+1)! + binomial(r+j+1, r-j)*(r+j+1)!/(r-j)!). (End)
%F E.g.f.: Pi*(BesselI(2, 2)*BesselY(2, 2*I*sqrt(1-x)) - BesselY(2,2*I)*BesselI(2, 2*sqrt(1-x)))/(1-x). Motivated to look into e.g.f.'s for such recurrences by email exchange with Gary Detlefs. One has to use simplifications after differentiation and putting x=0. See Abramowitz-Stegun handbook p. 360, 9.1.16. - _Wolfdieter Lang_, May 18 2010
%F Limit n->infinity a(n)/(n+1)! = BesselI(0,2)-BesselI(1,2) = 0.688948447698738204... - _Vaclav Kotesovec_, Jan 05 2013
%F a(n) = Sum_{k = 0..floor((n-1)/2)} (n-2*k-1)!*binomial(n-k-1,k)* binomial(n-k+1,k+2). Cf. A058798. - _Peter Bala_, Aug 01 2013
%F a(n) = (n+1)!*hypergeometric([1/2-n/2,1-n/2],[3,-1-n,1-n],4)/2 for n >= 2. - _Peter Luschny_, Sep 10 2014
%F E.g.f.: 2*(I(2,2)*K(2, 2*sqrt(1-x)) - K(2,2)*I(2, 2*sqrt(1-x)))/(1-x), where I(n, x) and K(n, x) are the modified Bessel functions of the second kind. - _G. C. Greubel_, Oct 07 2019
%p A058307 := proc(n) option remember; if n <= 1 then n else A058307(n-2)+(n+1)*A058307(n-1); fi; end;
%p a:= proc(n) option remember;
%p if n<2 then n
%p else (n+1)*a(n-1) + a(n-2)
%p fi;
%p end:
%p seq(a(n), n=0..30); # _G. C. Greubel_, Oct 07 2019
%t RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n+1)*a[n-1]+a[n-2]}, a, {n, 0, 30}] (* _Vincenzo Librandi_, May 06 2013 *)
%t Table[FullSimplify[(-BesselI[2+n,-2] * BesselK[2,2] + BesselI[2,2] * BesselK[2+n,2]) / (BesselI[3,2] * BesselK[2,2] + BesselI[2,2] * BesselK[3,2])],{n,0,20}] (* _Vaclav Kotesovec_, Feb 14 2014 *)
%t a[n_]:= a[n]= If[n<2, n, (n+1)*a[n-1] +a[n-2]]; Table[a[n], {n,0,30}] (* _G. C. Greubel_, Oct 07 2019 *)
%o (Magma) [n le 2 select n-1 else Self(n-2)+Self(n-1)*(n): n in [1..30]]; // _Vincenzo Librandi_, May 06 2013
%o (Sage)
%o def A058307(n):
%o if n < 2: return n
%o return factorial(n+1)*hypergeometric([1/2-n/2,1-n/2], [3,-1-n,1-n], 4)/2
%o [round(A058307(n).n(100)) for n in (0..21)] # _Peter Luschny_, Sep 10 2014
%o (PARI) my(m=30, v=concat([0,1], vector(m-2))); for(n=3, m, v[n]=n*v[n-1] +v[n-2]); v \\ _G. C. Greubel_, Nov 24 2018
%o (Sage)
%o @CachedFunction
%o def a(n):
%o if (n<2): return n
%o else: return (n+1)*a(n-1) + a(n-2)
%o [a(n) for n in (0..30)] # _G. C. Greubel_, Nov 24 2018
%o (GAP)
%o a:= function(n)
%o if n<2 then return n;
%o else return (n+1)*a(n-1) + a(n-2);
%o fi;
%o end;
%o List([0..30], n-> a(n) ); # _G. C. Greubel_, Oct 07 2019
%Y A column of A058294. Except for first term, -1 times row sums of A053495.
%Y Cf. A001053, A060997, A058798.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Dec 09 2000