login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058305
Numerator of H(n), where H(0)=-1/12, H(n) = number of equivalence classes of positive definite quadratic forms a*x^2+b*x*y+c*y^2 with discriminant b^2-4ac = -n, counting forms equivalent to x^2+y^2 (resp. x^2+x*y+y^2) with multiplicity 1/2 (resp. 1/3).
3
-1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 4, 2, 0, 0, 3, 3, 0, 0, 2, 5, 0, 0, 4, 2, 0, 0, 1, 4, 0, 0, 5, 10, 0, 0, 2, 2, 0, 0, 4, 4, 0, 0, 3, 4, 0, 0, 5, 7, 0, 0, 1, 4, 0, 0, 7, 3, 0, 0, 7, 4, 0, 0, 5, 6, 0, 0, 3, 4, 0, 0, 6, 2, 0, 0, 2, 6, 0, 0, 8, 6, 0, 0, 3
OFFSET
0,13
COMMENTS
H(n) is usually called the Hurwitz class number.
a(n) = 0 if n = 1 or 2 (mod 4).
REFERENCES
D. Zagier, The Eichler-Selberg Trace Formula on SL_2(Z), Appendix to S. Lang, Introduction to Modular Forms, Springer, 1976.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
N. Lygeros, O. Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.
FORMULA
H(n) = A259825(n) / 12. - Michael Somos, Jul 05 2015
EXAMPLE
-1/12, 0, 0, 1/3, 1/2, 0, 0, 1, 1, ...
MATHEMATICA
terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; CoefficientList[ gf[terms // Sqrt // Ceiling] + O[x]^terms, x]/12 // Numerator (* Jean-François Alcover, Apr 02 2017, after Michael Somos *)
PROG
(PARI) H(n)=sumdiv(core(n, 1)[2], d, my(D=-n/d^2); if(D%4<2, qfbclassno(D)/max(1, D+6)))
a(n)=if(n, numerator(H(n)), -1) \\ Charles R Greathouse IV, Apr 25 2013
(PARI) {a(n) = numerator( qfbhclassno( n))}; /* Michael Somos, Jul 06 2015 */
CROSSREFS
Sequence in context: A317448 A292900 A177893 * A193717 A020808 A198364
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Dec 09 2000
STATUS
approved