login
A198364
Decimal expansion of greatest x having 4*x^2+3x=2*cos(x).
3
4, 0, 0, 3, 0, 3, 9, 9, 5, 2, 5, 5, 1, 8, 5, 9, 1, 4, 6, 3, 0, 6, 3, 7, 1, 8, 6, 8, 3, 4, 2, 0, 3, 5, 7, 2, 4, 6, 4, 1, 5, 2, 9, 6, 5, 1, 0, 7, 0, 7, 9, 4, 9, 2, 4, 4, 3, 2, 3, 2, 8, 6, 3, 4, 2, 8, 9, 9, 3, 8, 5, 5, 3, 3, 2, 2, 1, 0, 4, 0, 7, 9, 7, 2, 4, 9, 5, 1, 8, 7, 4, 3, 8, 5, 2, 2, 6, 0, 3
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.0119640719541596551643922516868104...
greatest x: 0.4003039952551859146306371868342035...
MATHEMATICA
a = 4; b = 3; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
RealDigits[r1] (* A198363 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .4, .41}, WorkingPrecision -> 110]
RealDigits[r2] (* A198364 *)
CROSSREFS
Cf. A197737.
Sequence in context: A058305 A193717 A020808 * A375221 A325492 A266270
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved