login
A198361
Decimal expansion of least x having 4*x^2+3x=cos(x).
4
9, 1, 6, 1, 5, 1, 0, 6, 1, 0, 9, 6, 8, 3, 5, 7, 7, 0, 0, 0, 1, 3, 5, 0, 7, 2, 8, 0, 3, 9, 4, 6, 3, 9, 1, 8, 9, 1, 2, 6, 5, 1, 0, 6, 8, 0, 9, 3, 7, 1, 6, 1, 7, 1, 8, 8, 4, 2, 5, 1, 7, 8, 5, 3, 2, 1, 3, 7, 6, 0, 0, 8, 0, 0, 5, 1, 4, 4, 9, 3, 8, 7, 1, 5, 7, 8, 9, 2, 0, 1, 9, 0, 1, 3, 3, 8, 3, 9, 8
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.91615106109683577000135072803946391...
greatest x: 0.244045322629135591466858282939448079493...
MATHEMATICA
a = 4; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r1] (* A198361 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .24, .25}, WorkingPrecision -> 110]
RealDigits[r2] (* A198362 *)
CROSSREFS
Cf. A197737.
Sequence in context: A161321 A090656 A058284 * A229156 A016579 A154011
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved