login
A198360
Decimal expansion of greatest x having 4*x^2+2x=3*cos(x).
3
5, 8, 0, 4, 5, 7, 1, 2, 4, 4, 4, 5, 9, 3, 3, 1, 6, 1, 7, 9, 7, 2, 1, 9, 6, 5, 1, 4, 2, 8, 8, 1, 9, 0, 7, 5, 8, 9, 3, 8, 9, 8, 1, 1, 3, 7, 0, 7, 3, 9, 1, 2, 4, 9, 1, 2, 2, 4, 0, 8, 6, 1, 6, 7, 8, 2, 2, 5, 7, 9, 9, 5, 6, 9, 8, 9, 0, 1, 5, 7, 4, 9, 9, 8, 9, 7, 4, 5, 1, 3, 3, 1, 9, 1, 6, 1, 8, 0, 9, 6, 6, 5
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.95434777660875567212090095479339137329...
greatest x: 0.58045712444593316179721965142881907589...
MATHEMATICA
a = 4; b = 2; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r1] (* A198359 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110]
RealDigits[r2] (* A198360 *)
CROSSREFS
Cf. A197737.
Sequence in context: A154052 A181439 A011496 * A153420 A193505 A141848
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved