login
A198366
Decimal expansion of greatest x having 4*x^2+3x=3*cos(x).
3
5, 1, 5, 5, 7, 8, 8, 1, 1, 1, 6, 4, 6, 6, 2, 3, 2, 2, 9, 1, 6, 7, 6, 0, 6, 2, 2, 0, 0, 9, 0, 9, 2, 1, 8, 3, 1, 2, 9, 5, 9, 3, 7, 5, 7, 1, 8, 7, 5, 1, 0, 0, 0, 1, 4, 2, 6, 2, 7, 6, 0, 4, 3, 6, 4, 4, 5, 3, 7, 8, 8, 4, 6, 1, 0, 7, 2, 5, 0, 0, 9, 0, 1, 0, 9, 5, 2, 5, 3, 0, 7, 6, 1, 7, 4, 6, 6, 8, 2
OFFSET
1,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.0785971095688581117180854186330111...
greatest x: 0.51557881116466232291676062200909...
MATHEMATICA
a = 4; b = 3; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.1, -1.0}, WorkingPrecision -> 110]
RealDigits[r1] (* A198365 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .51, .52}, WorkingPrecision -> 110]
RealDigits[r2] (* A198366 *)
CROSSREFS
Cf. A197737.
Sequence in context: A275976 A306577 A143969 * A162797 A087232 A151780
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 24 2011
STATUS
approved