login
A058303
Decimal expansion of the imaginary part of the first nontrivial zero of the Riemann zeta function.
26
1, 4, 1, 3, 4, 7, 2, 5, 1, 4, 1, 7, 3, 4, 6, 9, 3, 7, 9, 0, 4, 5, 7, 2, 5, 1, 9, 8, 3, 5, 6, 2, 4, 7, 0, 2, 7, 0, 7, 8, 4, 2, 5, 7, 1, 1, 5, 6, 9, 9, 2, 4, 3, 1, 7, 5, 6, 8, 5, 5, 6, 7, 4, 6, 0, 1, 4, 9, 9, 6, 3, 4, 2, 9, 8, 0, 9, 2, 5, 6, 7, 6, 4, 9, 4, 9, 0, 1, 0, 3, 9, 3, 1, 7, 1, 5, 6, 1, 0, 1, 2, 7, 7, 9, 2
OFFSET
2,2
COMMENTS
"The Riemann Hypothesis, considered by many to be the most important unsolved problem of mathematics, is the assertion that all of zeta's nontrivial zeros line up with the first two all of which lie on the line 1/2 + sqrt(-1)*t, which is called the critical line. It is known that the hypothesis is obeyed for the first billion and a half zeros." (Wagon)
We can compute 105 digits of this zeta zero as the numerical integral: gamma = Integral_{t=0..gamma+15} (1/2)*(1 - sign((RiemannSiegelTheta(t) + Im(log(zeta(1/2 + i*t))))/Pi - n + 3/2)) where n=1 and where the initial value of gamma = 1. The upper integration limit is arbitrary as long as it is greater than the zeta zero computed recursively. The recursive formula fails at zeta zeros with indices n equal to sequence A153815. - Mats Granvik, Feb 15 2017
REFERENCES
S. Wagon, "Mathematica In Action," W. H. Freeman and Company, NY, 1991, page 361.
LINKS
P. J. Forrester and A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, arXiv preprint arXiv:1506.06531 [math-ph], 2015.
P. J. Forrester and A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, Proceedings of the Royal Society A, Vol: 471, Issue: 2182, 2015.
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
Eric Weisstein's World of Mathematics, Xi-Function.
FORMULA
zeta(1/2 + i*14.1347251417346937904572519836...) = 0.
EXAMPLE
14.1347251417346937904572519835624702707842571156992...
MAPLE
Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=14.13)); # Iaroslav V. Blagouchine, Jun 24 2016
MATHEMATICA
FindRoot[ Zeta[1/2 + I*t], {t, 14 + {-.3, +.3}}, AccuracyGoal -> 100, WorkingPrecision -> 120]
RealDigits[N[Im[ZetaZero[1]], 100]][[1]] (* Charles R Greathouse IV, Apr 09 2012 *)
(* The following numerical integral takes about 9 minutes to compute *)Clear[n, t, gamma]; gamma = 1; numberofzetazeros = 1; Quiet[Do[gamma = N[NIntegrate[(1/2)*(1 - Sign[(RiemannSiegelTheta[t] + Im[Log[Zeta[I*t + 1/2]]])/Pi - n + 3/2]), {t, 0, gamma + 15}, PrecisionGoal -> 110, MaxRecursion -> 350, WorkingPrecision -> 120], 105]; Print[gamma], {n, 1, numberofzetazeros}]]; RealDigits[gamma][[1]] (* Mats Granvik, Feb 15 2017 *)
PROG
(PARI) solve(x=14, 15, imag(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Feb 26 2012
(PARI) lfunzeros(1, 15)[1] \\ Charles R Greathouse IV, Mar 07 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1: this), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor); A057641, A057640, A058209, A058210.
Sequence in context: A376312 A362331 A376264 * A240935 A090724 A343571
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Dec 08 2000
STATUS
approved