

A192492


Decimal expansion of imaginary part of 5th nontrivial zero of Riemann zeta function.


2



3, 2, 9, 3, 5, 0, 6, 1, 5, 8, 7, 7, 3, 9, 1, 8, 9, 6, 9, 0, 6, 6, 2, 3, 6, 8, 9, 6, 4, 0, 7, 4, 9, 0, 3, 4, 8, 8, 8, 1, 2, 7, 1, 5, 6, 0, 3, 5, 1, 7, 0, 3, 9, 0, 0, 9, 2, 8, 0, 0, 0, 3, 4, 4, 0, 7, 8, 4, 8, 1, 5, 6, 0, 8, 6, 3, 0, 5, 5, 1, 0, 0, 5, 9, 3, 8, 8, 4, 8, 4, 9, 6, 1, 3, 5, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).


LINKS

Table of n, a(n) for n=2..97.
Andrew M. Odlyzko, The first 100 (non trivial) zeros of the Riemann Zeta function, to over 1000 decimal digits each, AT&T Labs  Research.
Andrew M. Odlyzko, Tables of zeros of the Riemann zeta function


EXAMPLE

32.9350615877391896906623689640749...


MATHEMATICA

(* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]


PROG

(PARI) solve(y=32, 33, real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [32, 33])[1] \\ Charles R Greathouse IV, Mar 10 2016


CROSSREFS

Cf. A002410, Nearest integer to imaginary part of nth zero of Riemann zeta function. The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). The real parts of the trivial zeros are given by A005843 multiplied by 1 (and ignoring the initial 0 of that sequence).
Sequence in context: A228936 A169862 A245884 * A104005 A224578 A134562
Adjacent sequences: A192489 A192490 A192491 * A192493 A192494 A192495


KEYWORD

nonn,cons


AUTHOR

Alonso del Arte, Jul 02 2011


STATUS

approved



