

A224578


Decimal expansion of (gamma+sqrt(4+gamma^2))/2, where gamma is the EulerMascheroni constant.


2



1, 3, 2, 9, 4, 2, 2, 1, 6, 7, 9, 3, 6, 1, 7, 3, 5, 8, 1, 8, 7, 9, 4, 1, 7, 7, 6, 8, 1, 0, 5, 6, 3, 6, 2, 4, 4, 8, 0, 8, 4, 9, 5, 8, 3, 3, 2, 9, 2, 0, 0, 0, 8, 3, 0, 4, 4, 2, 6, 2, 1, 4, 6, 5, 7, 4, 2, 5, 8, 1, 9, 9, 6, 9, 1, 3, 2, 6, 1, 7, 8, 1, 2, 2, 7, 6, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Decimal expansion of shape of a gammaextension rectangle; see A188640 for definitions of shape and rextension rectangle.
Specifically, for a gammaextension rectangle, 1 square is removed first, then 3 squares, then 28 squares, then 13 squares, then 3 squares,...(see A224579), so that the original rectangle is partitioned into an infinite collection of squares.


LINKS



EXAMPLE

1.329422167936173581879417768105... = [gamma, gamma, gamma, ...]


MAPLE

evalf((gamma+sqrt(4+gamma^2))/2, 90);


MATHEMATICA

RealDigits[(EulerGamma + Sqrt[4 + EulerGamma^2])/2, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)


PROG

(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) + Sqrt(4 + EulerGamma(R)^2))/2; // G. C. Greubel, Aug 30 2018


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



