login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292900
Triangle read by rows, a generalization of the Bernoulli numbers, the numerators for n>=0 and 0<=k<=n.
1
1, 0, 1, 0, -1, 1, 0, 1, -4, 0, 0, -1, 47, -10, -1, 0, 1, -221, 205, -209, 0, 0, -1, 953, -5495, 10789, -427, 1, 0, 1, -3953, 123445, -8646163, 177093, -22807, 0, 0, -1, 16097, -2534735, 22337747, -356249173, 3440131, -46212, -1
OFFSET
0,9
COMMENTS
The diagonal B(n, n) gives the Bernoulli numbers B_n = B_n(1). The formula is due to L. Kronecker and the generalization to Fukuhara, Kawazumi and Kuno.
LINKS
S. Fukuhara, N. Kawazumi and Y. Kuno, Generalized Kronecker formula for Bernoulli numbers and self-intersections of curves on a surface, arXiv:1505.04840 [math.NT], 2015.
L. Kronecker, Über die Bernoullischen Zahlen, J. Reine Angew. Math. 94 (1883), 268-269.
FORMULA
B(n, k) = Sum_{j=0..k}(((-1)^(j-n)/(j+1))*binomial(k+1, j+1)*Sum_{i=0..j}(i^n*(j-i+1)^(k-n))) if n >= 1 and B(0, 0) = 1.
B_n = B(n, n) = Sum_{j=0..n}((-1)^(n-j)/(j+1))*binomial(n+1,j+1)*(Sum_{i=0..j}i^n).
T(n, k) = numerator(B(n, k)).
EXAMPLE
The triangle T(n, k) begins:
[0], 1
[1], 0, 1
[2], 0, -1, 1
[3], 0, 1, -4, 0
[4], 0, -1, 47, -10, -1
[5], 0, 1, -221, 205, -209, 0
[6], 0, -1, 953, -5495, 10789, -427, 1
[7], 0, 1, -3953, 123445, -8646163, 177093, -22807, 0
[8], 0, -1, 16097, -2534735, 22337747, -356249173, 3440131, -46212, -1
The rational triangle B(n, k) begins:
[0], 1
[1], 0, 1/2
[2], 0, -1/2, 1/6
[3], 0, 1/2, -4/3, 0
[4], 0, -1/2, 47/12, -10/3, -1/30
[5], 0, 1/2, -221/24, 205/9, -209/20, 0
[6], 0, -1/2, 953/48, -5495/54, 10789/80, -427/10, 1/42
[7], 0, 1/2, -3953/96, 123445/324, -8646163/8640, 177093/200, -22807/105, 0
MAPLE
B := (n, k) -> `if`(n = 0, 1, add(((-1)^(j-n)/(j+1))*binomial(k+1, j+1)*add(i^n*(j-i+1)^(k-n), i=0..j), j=0..k)):
for n from 0 to 8 do seq(numer(B(n, k)), k=0..n) od;
MATHEMATICA
B[0, 0] = 1; B[n_, k_] := Sum[(-1)^(j-n)/(j+1)*Binomial[k+1, j+1]* Sum[i^n*(j-i+1)^(k-n) , {i, 0, j}] , {j, 0, k}];
Table[B[n, k] // Numerator, {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, from Maple *)
CROSSREFS
Cf. A292901 (denominators), B(n, n) = A164555(n)/A027642(n), A215083.
Sequence in context: A194794 A337967 A317448 * A177893 A058305 A193717
KEYWORD
sign,tabl,frac
AUTHOR
Peter Luschny, Oct 01 2017
STATUS
approved