login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292900 Triangle read by rows, a generalization of the Bernoulli numbers, the numerators for n>=0 and 0<=k<=n. 1
1, 0, 1, 0, -1, 1, 0, 1, -4, 0, 0, -1, 47, -10, -1, 0, 1, -221, 205, -209, 0, 0, -1, 953, -5495, 10789, -427, 1, 0, 1, -3953, 123445, -8646163, 177093, -22807, 0, 0, -1, 16097, -2534735, 22337747, -356249173, 3440131, -46212, -1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The diagonal B(n, n) gives the Bernoulli numbers B_n = B_n(1). The formula is due to L. Kronecker and the generalization to Fukuhara, Kawazumi and Kuno.

LINKS

Table of n, a(n) for n=0..44.

S. Fukuhara, N. Kawazumi and Y. Kuno, Generalized Kronecker formula for Bernoulli numbers and self-intersections of curves on a surface, arXiv:1505.04840 [math.NT], 2015.

L. Kronecker, Über die Bernoullischen Zahlen, J. Reine Angew. Math. 94 (1883), 268-269.

FORMULA

B(n, k) = Sum_{j=0..k}(((-1)^(j-n)/(j+1))*binomial(k+1, j+1)*Sum_{i=0..j}(i^n*(j-i+1)^(k-n))) if n >= 1 and B(0, 0) = 1.

B_n = B(n, n) = Sum_{j=0..n}((-1)^(n-j)/(j+1))*binomial(n+1,j+1)*(Sum_{i=0..j}i^n).

T(n, k) = numerator(B(n, k)).

EXAMPLE

The triangle T(n, k) begins:

[0], 1

[1], 0,  1

[2], 0, -1,     1

[3], 0,  1,    -4,        0

[4], 0, -1,    47,      -10,       -1

[5], 0,  1,  -221,      205,     -209,          0

[6], 0, -1,   953,    -5495,    10789,       -427,       1

[7], 0,  1, -3953,   123445, -8646163,     177093,  -22807,      0

[8], 0, -1, 16097, -2534735, 22337747, -356249173, 3440131, -46212, -1

The rational triangle B(n, k) begins:

[0], 1

[1], 0,  1/2

[2], 0, -1/2,      1/6

[3], 0,  1/2,     -4/3,          0

[4], 0, -1/2,    47/12,      -10/3,         -1/30

[5], 0,  1/2,  -221/24,      205/9,       -209/20,          0

[6], 0, -1/2,   953/48,   -5495/54,      10789/80,    -427/10,       1/42

[7], 0,  1/2, -3953/96, 123445/324, -8646163/8640, 177093/200, -22807/105, 0

MAPLE

B := (n, k) -> `if`(n = 0, 1, add(((-1)^(j-n)/(j+1))*binomial(k+1, j+1)*add(i^n*(j-i+1)^(k-n), i=0..j), j=0..k)):

for n from 0 to 8 do seq(numer(B(n, k)), k=0..n) od;

MATHEMATICA

B[0, 0] = 1; B[n_, k_] := Sum[(-1)^(j-n)/(j+1)*Binomial[k+1, j+1]* Sum[i^n*(j-i+1)^(k-n) , {i, 0, j}] , {j, 0, k}];

Table[B[n, k] // Numerator, {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, from Maple *)

CROSSREFS

Cf. A292901 (denominators), B(n, n) = A164555(n)/A027642(n), A215083.

Sequence in context: A123163 A194794 A317448 * A177893 A058305 A193717

Adjacent sequences:  A292897 A292898 A292899 * A292901 A292902 A292903

KEYWORD

sign,tabl,frac

AUTHOR

Peter Luschny, Oct 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 19:30 EDT 2020. Contains 336451 sequences. (Running on oeis4.)