login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292620
a(n) = a(n-1) + a(floor(log_2(n))), with a(1) = 1.
2
1, 2, 3, 5, 7, 9, 11, 14, 17, 20, 23, 26, 29, 32, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 199, 206, 213, 220, 227, 234, 241, 248, 255, 262, 269, 276, 283, 290, 297, 304, 311
OFFSET
1,2
COMMENTS
a(n) > c*n*log_2(n)*log_2(log_2(n))*log_2(log_2(log_2(n)))*...*log_2(log_2...(log_2(n))...) (k layers) for any sufficiently large n, any constant c and any positive integer k.
The sum of 1/a(i) for i = 1, 2, 3, ... converges extremely slowly to the limit 5.70....
MAPLE
f:= proc(n) option remember; procname(n-1)+procname(ilog2(n)) end proc:
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Sep 24 2017
MATHEMATICA
a[n_] := a[n] = If[n == 1, 1, a[n - 1] + a[Floor@ Log2@ n]]; Array[a, 59] (* Michael De Vlieger, Sep 21 2017 *)
PROG
(PARI) a(n) = if (n<=2, n, a(n-1) + a(logint(n, 2))); \\ Michel Marcus, Sep 21 2017
CROSSREFS
Sequence in context: A102422 A062427 A127721 * A241907 A065130 A023535
KEYWORD
nonn,easy
AUTHOR
Yi Yang, Sep 20 2017
STATUS
approved