OFFSET
1,9
COMMENTS
This array is based upon the conjectured formula by Charles R Greathouse IV in A077644, adapted to other bases.
As far as the direct computations for bases b = 2..12 and powers n=0..12 cited in cross references are concerned, the values computed here conform to the exact numbers of partitions.
FORMULA
a(b,n) = ceiling(Pi*sqrt(2/3)*sqrt(b)^n - log(48)/2 - n*log b) / log(10).
EXAMPLE
\n 0 1 2 3 4 5 6 7 8 9 10 11 ...
b\
2 1 1 1 2 3 4 7 10 15 22 32 47
3 1 1 2 4 8 15 27 48 86 152 266 463
4 1 1 3 7 15 32 67 138 280 565 1134 2275
5 1 1 4 10 25 58 135 306 690 1550 3474 7776
6 1 2 5 14 37 94 236 584 1437 3529 8654 21210
7 1 2 6 18 51 140 377 1005 2668 7069 18714 49527
8 1 2 7 22 67 197 565 1607 4555 12898 36494 103238
9 1 2 8 27 86 266 806 2429 7301 21918 65771 197332
10 1 2 9 32 107 347 1108 3515 11132 35219 111391 352269
11 1 2 10 37 130 442 1476 4910 16302 54085 179401 595031
12 1 2 11 43 156 550 1918 6661 23091 80011 277190 960240
MATHEMATICA
f[n_, b_] := Ceiling[(Pi*Sqrt[2/3]*Sqrt[b]^n - Log[48]/2 - n*Log[b]) / Log[10]]; Table[ f[n - b, b], {n, 2, 20}, {b, n, 2, -1}] // Flatten
(* cross checked with *) g[n_, b_] := f[n, b] = Floor[ Log10[ PartitionsP[ b^n]] + 1]; Table[ f[n - b, b], {n, 2, 20}, {b, n, 2, -1}] // Flatten
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v, Oct 12 2014
STATUS
approved