login
A248739
a(n) = 29*n + ceiling(n/29).
2
0, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 872, 901, 930, 959, 988, 1017, 1046, 1075, 1104, 1133, 1162, 1191, 1220, 1249, 1278, 1307, 1336, 1365, 1394, 1423
OFFSET
0,2
COMMENTS
This is an approximation to A004962 (ceiling of n*phi^7, where phi is the golden ratio, A001622).
LINKS
Eric Weisstein's World of Mathematics, Golden Ratio
Wikipedia, Golden ratio
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
FORMULA
a(n) = 29*n + ceiling(n/29).
a(n) = A004962(n) for n < 871. - Joerg Arndt, Oct 18 2014
EXAMPLE
For n = 10, 29n + ceiling(n/29) = 290 + ceiling(0.3) = 290 + 1 = 291.
MAPLE
A248739:=n->29*n+ceil(n/29): seq(A248739(n), n=0..50); # Wesley Ivan Hurt, Oct 14 2014
MATHEMATICA
Table[29 n + Ceiling[n/29], {n, 0, 60}] (* Vincenzo Librandi, Oct 13 2014 *)
PROG
(Python)
from math import *
for n in range(0, 101):
..print n, (29*n+ceil(n/29.0))
(Magma) [29*n + Ceiling(n/29): n in [0..60]]; // Vincenzo Librandi, Oct 13 2014
CROSSREFS
Cf. A001622 (phi), A195819 (29*n).
Cf. A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)), A004942 (round(n*phi^7)).
Sequence in context: A154796 A350316 A248572 * A004962 A271744 A121960
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Oct 13 2014
STATUS
approved