|
|
A350316
|
|
Totient numbers k such that 3*k is a nontotient.
|
|
5
|
|
|
1, 30, 58, 78, 82, 106, 130, 138, 150, 172, 178, 198, 222, 226, 238, 268, 282, 316, 342, 358, 366, 378, 382, 388, 418, 438, 462, 478, 498, 502, 506, 508, 546, 562, 570, 598, 606, 618, 630, 642, 646, 652, 658, 682, 690, 718, 738, 742, 772, 786, 810, 826, 838
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..53.
|
|
EXAMPLE
|
30 is a term since 30 = phi(31) = phi(62), but phi(n) = 3*30 = 90 has no solution.
58 is a term since 58 = phi(59) = phi(118), but phi(n) = 3*58 = 174 has no solution.
|
|
PROG
|
(PARI) isA350316(n) = istotient(n) && !istotient(3*n)
|
|
CROSSREFS
|
Totient numbers k such that m*k is a nontotient: this sequence (m=3), A350317 (m=5), A350318 (m=7), A350319 (m=9), A350320 (m=10), A350321 (m=14).
Cf. A002202, A005277.
Sequence in context: A154599 A048451 A154796 * A248572 A248739 A004962
Adjacent sequences: A350313 A350314 A350315 * A350317 A350318 A350319
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jianing Song, Dec 24 2021
|
|
STATUS
|
approved
|
|
|
|