login
a(n) = 29*n + ceiling(n/29).
2

%I #33 Apr 03 2024 11:16:03

%S 0,30,59,88,117,146,175,204,233,262,291,320,349,378,407,436,465,494,

%T 523,552,581,610,639,668,697,726,755,784,813,842,872,901,930,959,988,

%U 1017,1046,1075,1104,1133,1162,1191,1220,1249,1278,1307,1336,1365,1394,1423

%N a(n) = 29*n + ceiling(n/29).

%C This is an approximation to A004962 (ceiling of n*phi^7, where phi is the golden ratio, A001622).

%H Karl V. Keller, Jr., <a href="/A248739/b248739.txt">Table of n, a(n) for n = 0..1000</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/">Fibonacci numbers and the golden section</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Golden_ratio">Golden ratio</a>

%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).

%F a(n) = 29*n + ceiling(n/29).

%F a(n) = A004962(n) for n < 871. - _Joerg Arndt_, Oct 18 2014

%e For n = 10, 29n + ceiling(n/29) = 290 + ceiling(0.3) = 290 + 1 = 291.

%p A248739:=n->29*n+ceil(n/29): seq(A248739(n), n=0..50); # _Wesley Ivan Hurt_, Oct 14 2014

%t Table[29 n + Ceiling[n/29], {n, 0, 60}] (* _Vincenzo Librandi_, Oct 13 2014 *)

%o (Python)

%o from math import *

%o for n in range(0,101):

%o ..print n,(29*n+ceil(n/29.0))

%o (Magma) [29*n + Ceiling(n/29): n in [0..60]]; // _Vincenzo Librandi_, Oct 13 2014

%Y Cf. A001622 (phi), A195819 (29*n).

%Y Cf. A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)), A004942 (round(n*phi^7)).

%K nonn,easy

%O 0,2

%A _Karl V. Keller, Jr._, Oct 13 2014