
2, 5, 10, 17, 26, 37, 65, 82, 101, 122, 145, 197, 226, 257, 362, 401, 485, 577, 626, 677, 785, 842, 901, 1157, 1226, 1297, 1522, 1601, 1765, 1937, 2026, 2117, 2305, 2402, 2501, 2602, 2705, 2917, 3137, 3365, 3482, 3601, 3722, 3845, 4097, 4226, 4357, 4762
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Prime factors are counted with multiplicity, as in A144255.
Iwaniec shows that the sequence is infinite.


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
H. Iwaniec, Almostprimes represented by quadratic polynomials, Inventiones Mathematicae 47:2 (1978), pp. 171188.
Vishaal Kapoor, Almostprimes represented by quadratic polynomials, MS thesis (2006). arXiv:1910.02885 [math.NT]
Robert J. Lemke Oliver, Almostprimes represented by quadratic polynomials, Acta Arithm. 151 (2012) 241. DOI: 10.4064/aa15132
Wikipedia, Landau's problems


FORMULA

A002496 UNION A144255.


PROG

(PARI) is(n)=issquare(n1) && bigomega(n)<3 \\ Charles R Greathouse IV, Feb 05 2017


CROSSREFS

Cf. A002496, A069987.
Sequence in context: A300164 A248193 A069987 * A246884 A119114 A062493
Adjacent sequences: A248739 A248740 A248741 * A248743 A248744 A248745


KEYWORD

nonn


AUTHOR

R. J. Mathar, Oct 13 2014


STATUS

approved

