login
A248744
Number of different ways one can attack all squares on an n X n chessboard with n rooks.
6
1, 1, 6, 48, 488, 6130, 92592, 1642046, 33514112, 774478098, 19996371200, 570583424422, 17831721894912, 605743986163706, 22223926472824832, 875786473087350750, 36893467224629215232, 1654480168085245432354, 78692809748219369422848, 3956839189675526769415958
OFFSET
0,3
COMMENTS
Number of minimum (and minimal) dominating sets in the n X n rook graph. - Eric W. Weisstein, Jun 20 2017 and Aug 02 2017
REFERENCES
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. 1: Combinatorial Analysis and Probability Theory, Dover Publications, 1987, p. 77
LINKS
Eric Weisstein's World of Mathematics, Minimal Dominating Set
Eric Weisstein's World of Mathematics, Minimum Dominating Set
Eric Weisstein's World of Mathematics, Rook Graph
FORMULA
a(n) = 2*n^n - n!.
MAPLE
A248744:=n->2*n^n-n!: seq(A248744(n), n=0..25); # Wesley Ivan Hurt, Nov 30 2017
MATHEMATICA
Table[2 n^n - n!, {n, 20}]
CROSSREFS
Main diagonal of A290632 and of A368831.
Sequence in context: A105627 A051578 A052639 * A261900 A055861 A053506
KEYWORD
nonn
AUTHOR
Stephen Penrice, Apr 09 2017
STATUS
approved