login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316405
Number of multisets of exactly four nonempty binary words with a total of n letters such that no word has a majority of 0's.
2
1, 3, 10, 33, 98, 270, 738, 1935, 5004, 12580, 31354, 76444, 185305, 441363, 1046837, 2447913, 5705753, 13143961, 30202325, 68719396, 156034994, 351348607, 789783351, 1762658134, 3928209272, 8700183502, 19244947618, 42340195770, 93049476310, 203518456343
OFFSET
4,2
LINKS
FORMULA
a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^j)^A027306(j).
MAPLE
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):
b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(
binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5)
end:
a:= n-> coeff(b(n$2), x, 4):
seq(a(n), n=4..33);
CROSSREFS
Column k=4 of A292506.
Sequence in context: A080697 A316404 A333027 * A316406 A316407 A316408
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 02 2018
STATUS
approved