login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of multisets of exactly four nonempty binary words with a total of n letters such that no word has a majority of 0's.
2

%I #9 Jul 02 2018 16:30:09

%S 1,3,10,33,98,270,738,1935,5004,12580,31354,76444,185305,441363,

%T 1046837,2447913,5705753,13143961,30202325,68719396,156034994,

%U 351348607,789783351,1762658134,3928209272,8700183502,19244947618,42340195770,93049476310,203518456343

%N Number of multisets of exactly four nonempty binary words with a total of n letters such that no word has a majority of 0's.

%H Alois P. Heinz, <a href="/A316405/b316405.txt">Table of n, a(n) for n = 4..1000</a>

%F a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^j)^A027306(j).

%p g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2):

%p b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(

%p binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5)

%p end:

%p a:= n-> coeff(b(n$2), x, 4):

%p seq(a(n), n=4..33);

%Y Column k=4 of A292506.

%Y Cf. A027306, A292549.

%K nonn

%O 4,2

%A _Alois P. Heinz_, Jul 02 2018