OFFSET
0,3
COMMENTS
A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
A finite multiset is normal if it covers an initial interval of positive integers.
EXAMPLE
The a(0) = 1 through a(3) = 12 trees:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p], {p, Select[mps[m], Length[m]>Length[#1]>1&]}], m];
Table[Sum[Length[ssrtrees[s]], {s, allnorm[n]}], {n, 0, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 26 2019
STATUS
approved