login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330651
a(n) = n^4 + 3*n^3 + 2*n^2 - 2*n.
1
0, 4, 44, 174, 472, 1040, 2004, 3514, 5744, 8892, 13180, 18854, 26184, 35464, 47012, 61170, 78304, 98804, 123084, 151582, 184760, 223104, 267124, 317354, 374352, 438700, 511004, 591894, 682024, 782072, 892740, 1014754, 1148864, 1295844
OFFSET
0,2
COMMENTS
a(n)/A269657(n) gives unforgeable word approximations (A003000) with increasing accuracy, as follows: 4/15, 44/79, 174/253, ... ~ 0.26 (A242430), 0.5569 (A019308), 0.68774 (A019309), 0.8055770, 0.83674321, 0.85937882, 0.87654509, 0.89000100, 0.9008270111, ....
FORMULA
From Colin Barker, Jan 15 2020: (Start)
G.f.: 2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
E.g.f.: exp(x)*x*(4 + 18*x + 9*x^2 + x^3). - Stefano Spezia, Feb 03 2020
MAPLE
A330651 := n -> (((n+3)*n+2)*n-2)*n; # M. F. Hasler, Feb 29 2020
MATHEMATICA
Numerator/@Table[(-2 n+2 n^2+3 n^3+n^4)/(1+3 n+6 n^2+4 n^3+n^4), {n, 0, 33}] (* Ed Pegg Jr, Jan 15 2020 *)
PROG
(PARI) Vec(2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5 + O(x^40), -40) \\ Colin Barker, Jan 15 2020
(PARI) apply( {A330651(n)=(((n+3)*n+2)*n-2)*n}, [0..44]) \\ M. F. Hasler, Feb 29 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ed Pegg Jr, Jan 15 2020
STATUS
approved