

A077435


Number of right triangles whose vertices are lattice points in {1,2,...,n} X {1,2,...,n}.


11



0, 4, 44, 200, 596, 1444, 2960, 5520, 9496, 15332, 23596, 34936, 50020, 69732, 94816, 126176, 164960, 212372, 269620, 337960, 418716, 513444, 623736, 751152, 897776, 1065220, 1255460, 1470680, 1713052, 1984564, 2288304, 2626160, 3000960, 3415124, 3871108
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Place all bounding boxes of A279433 that will fit into the n X n grid in all possible positions, and the proper rectangles in two orientations: a(n) = sum(i=1..n, sum(j=1..i, k * (ni+1) * (nj+1) * A279433(i,j) where k=1 when i=j and k=2 otherwise.  Lars Blomberg, Mar 01 2017


LINKS



EXAMPLE

For n=2 if the four points are labeled
ab
cd
then the right triangles are abc, abd, acd, bcd,
so a(2)=4.
For n=3, label the points
abc
def
ghi
The right triangles are: abd (4*4 ways), acg (4 ways), acd and adf (8 ways each), ace and dbf (4 ways each), for a total of a(3) = 44.  N. J. A. Sloane, Jun 30 2016


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



