login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^4 + 3*n^3 + 2*n^2 - 2*n.
1

%I #41 Feb 29 2020 16:17:32

%S 0,4,44,174,472,1040,2004,3514,5744,8892,13180,18854,26184,35464,

%T 47012,61170,78304,98804,123084,151582,184760,223104,267124,317354,

%U 374352,438700,511004,591894,682024,782072,892740,1014754,1148864,1295844

%N a(n) = n^4 + 3*n^3 + 2*n^2 - 2*n.

%C a(n)/A269657(n) gives unforgeable word approximations (A003000) with increasing accuracy, as follows: 4/15, 44/79, 174/253, ... ~ 0.26 (A242430), 0.5569 (A019308), 0.68774 (A019309), 0.8055770, 0.83674321, 0.85937882, 0.87654509, 0.89000100, 0.9008270111, ....

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F From _Colin Barker_, Jan 15 2020: (Start)

%F G.f.: 2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.

%F (End)

%F E.g.f.: exp(x)*x*(4 + 18*x + 9*x^2 + x^3). - _Stefano Spezia_, Feb 03 2020

%p A330651 := n -> (((n+3)*n+2)*n-2)*n; # _M. F. Hasler_, Feb 29 2020

%t Numerator/@Table[(-2 n+2 n^2+3 n^3+n^4)/(1+3 n+6 n^2+4 n^3+n^4),{n,0,33}] (* _Ed Pegg Jr_, Jan 15 2020 *)

%o (PARI) Vec(2*x*(2 + 12*x - 3*x^2 + x^3) / (1 - x)^5 + O(x^40),-40) \\ _Colin Barker_, Jan 15 2020

%o (PARI) apply( {A330651(n)=(((n+3)*n+2)*n-2)*n}, [0..44]) \\ _M. F. Hasler_, Feb 29 2020

%Y Cf. A269657, A242430, A003000, A019308, A019309.

%K nonn,easy

%O 0,2

%A _Ed Pegg Jr_, Jan 15 2020