|
| |
|
|
A053312
|
|
a(n) contains n digits (either '1' or '2') and is divisible by 2^n.
|
|
9
|
|
|
|
2, 12, 112, 2112, 22112, 122112, 2122112, 12122112, 212122112, 1212122112, 11212122112, 111212122112, 1111212122112, 11111212122112, 211111212122112, 1211111212122112, 11211111212122112, 111211111212122112, 2111211111212122112, 12111211111212122112
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
1,1
|
|
|
COMMENTS
|
|
|
|
LINKS
|
|
|
|
FORMULA
|
a(n) = a(n-1) + 10^(n-1)*(2-[a(n-1)/2^(n-1) mod 2]), i.e., a(n) ends with a(n-1); if the (n-1)-th term is divisible by 2^n then the n-th term begins with a 2; if not, then the n-th term begins with a 1.
|
|
|
EXAMPLE
|
a(5) = 22112 since 22112 = 2^5 * 691 and 22112 contains 5 digits.
|
|
|
MATHEMATICA
|
Select[Flatten[Table[FromDigits/@Tuples[{1, 2}, n], {n, 20}]], Divisible[ #, 2^IntegerLength[#]]&] (* Harvey P. Dale, Jul 01 2019 *)
|
|
|
PROG
|
(Python)
from itertools import count, islice
def A053312_gen(): # generator of terms
a = 0
for n in count(0):
yield (a:=a+(10**n if (a>>n)&1 else 10**n<<1))
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
base,nonn
|
|
|
AUTHOR
|
|
|
|
STATUS
|
approved
|
| |
|
|