login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053309 Partial sums of A053308. 5
1, 10, 56, 231, 782, 2300, 6085, 14820, 33775, 72905, 150438, 298925, 575333, 1077748, 1972851, 3540913, 6249235, 10871723, 18683233, 31775031, 53566369, 89633545, 149052839, 246575109, 406146248, 666605513, 1090907965 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (10,-44,111,-174,168,-84,-6,39,-26,8,-1).

FORMULA

a(n) = Sum_{i=0..floor(n/2)} C(n+9-i, n-2i), n >= 0.

a(n) = a(n-1) + a(n-2) + C(n+8,8); n >= 0; a(-1)=0.

a(n) = Sum_{k=1..n} C(n-k+9,k+8), with n>=0. - Paolo P. Lava, Apr 16 2008

G.f.: 1/((x^2 + x - 1)*(x-1)^9). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

MATHEMATICA

Table[Sum[Binomial[n+9-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *)

PROG

(PARI) for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+9-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018

(Magma) [(&+[Binomial(n+9-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018

CROSSREFS

Cf. A053296, A053295, A136431.

Cf. A228074.

Sequence in context: A001786 A258478 A320756 * A035040 A002889 A055911

Adjacent sequences: A053306 A053307 A053308 * A053310 A053311 A053312

KEYWORD

easy,nonn

AUTHOR

Barry E. Williams, Mar 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 05:38 EST 2022. Contains 358431 sequences. (Running on oeis4.)