The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053308 Partial sums of A053296. 6
 1, 9, 46, 175, 551, 1518, 3785, 8735, 18955, 39130, 77533, 148487, 276408, 502415, 895103, 1568062, 2708322, 4622488, 7811510, 13091798, 21791338, 36067176, 59419294, 97522270, 159571139, 260459265, 424302452, 690141333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (9,-35,76,-98,70,-14,-20,19,-7,1). FORMULA a(n) = Sum_{i=0..floor(n/2)} C(n+8-i, n-2i), n >= 0. a(n) = a(n-1) + a(n-2) + C(n+7,7); n >= 0; a(-1)=0. a(n) = Sum_{k=1..n} C(n-k+8,k+7), with n>=0. - Paolo P. Lava, Apr 16 2008 MATHEMATICA Table[Sum[Binomial[n+8-j, n-2j], {j, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, May 24 2018 *) PROG (PARI) for(n=0, 30, print1(sum(j=0, floor(n/2), binomial(n+8-j, n-2*j)), ", ")) \\ G. C. Greubel, May 24 2018 (Magma) [(&+[Binomial(n+8-j, n-2*j): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 24 2018 CROSSREFS Cf. A053296, A053295, A136431. Cf. A228074. Sequence in context: A001781 A258477 A320755 * A201458 A034487 A035039 Adjacent sequences: A053305 A053306 A053307 * A053309 A053310 A053311 KEYWORD easy,nonn AUTHOR Barry E. Williams, Mar 06 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:43 EST 2022. Contains 358585 sequences. (Running on oeis4.)