OFFSET
0,2
COMMENTS
An induction-based argument can be used to show that this sequence is actually infinite.
Problem 1, proposed during the 5th All-Soviet-Union Mathematical Competition in 1971 at Riga (Pertsel link), asks for a proof that this sequence is infinite. - Bernard Schott, Mar 20 2023
REFERENCES
J. B. Tabov and P. J. Taylor, Methods of Problem Solving, Book 1, Australian Mathematics Trust, 1996.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..300
Vladimir A. Pertsel, Problems of the All-Soviet-Union Mathematical Competitions 1961-1986, the 5th competition, Riga, 1971, problem 144.
FORMULA
a(n) <= A053312(n).
MATHEMATICA
Table[m = 1; p = 2^k; While[Total@ DigitCount[m p][[3 ;; -1]] > 0, m++]; m p, {k, 0, 11}] (* Michael De Vlieger, Mar 17 2023 *)
PROG
(PARI) a(n) = my(k=1, d=digits(k*2^n)); while (!((vecmin(d)>=1) && (vecmax(d)<=2)), k++; d=digits(k*2^n)); k*2^n; \\ Michel Marcus, Mar 15 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Lekraj Beedassy, Feb 20 2012
EXTENSIONS
More terms from Alois P. Heinz, Feb 20 2012
STATUS
approved