OFFSET
0,3
COMMENTS
A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
Also the number of different colorings of phylogenetic trees with n labels using strongly normal multisets of colors. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.
EXAMPLE
The a(3) = 18 trees:
{1,1,1} {1,1,2} {1,2,3}
{{1},{1,1}} {{1},{1,2}} {{1},{2,3}}
{{1},{1},{1}} {{2},{1,1}} {{2},{1,3}}
{{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}}
{{1},{{1},{2}}} {{1},{2},{3}}
{{2},{{1},{1}}} {{1},{{2},{3}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
MATHEMATICA
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_, n_]:=Array[(t+#-1)/#&, n, 1, Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]], Length[s]], {s, Split[c]}], {c, Select[mps[m], Length[#]>1&]}];
Table[Sum[amemo[m], {m, strnorm[n]}], {n, 0, 5}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
CROSSREFS
The singleton-reduced version is A316652.
The unlabeled version is A330465.
Not requiring weakly decreasing multiplicities gives A330469.
The case where the leaves are sets is A330625.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 22 2019
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Dec 28 2020
STATUS
approved