login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330467 Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n. 10
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Also the number of different colorings of phylogenetic trees with n labels using strongly normal multisets of colors. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

LINKS

Table of n, a(n) for n=0..19.

EXAMPLE

The a(3) = 18 trees:

  {1,1,1}          {1,1,2}          {1,2,3}

  {{1},{1,1}}      {{1},{1,2}}      {{1},{2,3}}

  {{1},{1},{1}}    {{2},{1,1}}      {{2},{1,3}}

  {{1},{{1},{1}}}  {{1},{1},{2}}    {{3},{1,2}}

                   {{1},{{1},{2}}}  {{1},{2},{3}}

                   {{2},{{1},{1}}}  {{1},{{2},{3}}}

                                    {{2},{{1},{3}}}

                                    {{3},{{1},{2}}}

MATHEMATICA

strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

multing[t_, n_]:=Array[(t+#-1)/#&, n, 1, Times];

amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]], Length[s]], {s, Split[c]}], {c, Select[mps[m], Length[#]>1&]}];

Table[Sum[amemo[m], {m, strnorm[n]}], {n, 0, 5}]

PROG

(PARI) \\ See links in A339645 for combinatorial species functions.

cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}

StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020

CROSSREFS

The singleton-reduced version is A316652.

The unlabeled version is A330465.

Not requiring weakly decreasing multiplicities gives A330469.

The case where the leaves are sets is A330625.

Cf. A000311, A000669, A004114, A005121, A005804, A141268, A292504, A292505, A318812, A318849, A319312, A330471, A330475.

Sequence in context: A218917 A054759 A286630 * A222766 A302827 A007153

Adjacent sequences:  A330464 A330465 A330466 * A330468 A330469 A330470

KEYWORD

nonn

AUTHOR

Gus Wiseman, Dec 22 2019

EXTENSIONS

Terms a(10) and beyond from Andrew Howroyd, Dec 28 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 27 12:48 EDT 2022. Contains 354896 sequences. (Running on oeis4.)