|
|
A330467
|
|
Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.
|
|
10
|
|
|
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
Also the number of different colorings of phylogenetic trees with n labels using strongly normal multisets of colors. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.
|
|
LINKS
|
Table of n, a(n) for n=0..19.
|
|
EXAMPLE
|
The a(3) = 18 trees:
{1,1,1} {1,1,2} {1,2,3}
{{1},{1,1}} {{1},{1,2}} {{1},{2,3}}
{{1},{1},{1}} {{2},{1,1}} {{2},{1,3}}
{{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}}
{{1},{{1},{2}}} {{1},{2},{3}}
{{2},{{1},{1}}} {{1},{{2},{3}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
|
|
MATHEMATICA
|
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_, n_]:=Array[(t+#-1)/#&, n, 1, Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]], Length[s]], {s, Split[c]}], {c, Select[mps[m], Length[#]>1&]}];
Table[Sum[amemo[m], {m, strnorm[n]}], {n, 0, 5}]
|
|
PROG
|
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
|
|
CROSSREFS
|
The singleton-reduced version is A316652.
The unlabeled version is A330465.
Not requiring weakly decreasing multiplicities gives A330469.
The case where the leaves are sets is A330625.
Cf. A000311, A000669, A004114, A005121, A005804, A141268, A292504, A292505, A318812, A318849, A319312, A330471, A330475.
Sequence in context: A218917 A054759 A286630 * A222766 A302827 A007153
Adjacent sequences: A330464 A330465 A330466 * A330468 A330469 A330470
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Gus Wiseman, Dec 22 2019
|
|
EXTENSIONS
|
Terms a(10) and beyond from Andrew Howroyd, Dec 28 2020
|
|
STATUS
|
approved
|
|
|
|