login
A330475
Number of balanced reduced multisystems whose atoms constitute a strongly normal multiset of size n.
13
1, 1, 2, 9, 85, 1143, 25270
OFFSET
0,3
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
EXAMPLE
The a(0) = 1 through a(3) = 9 multisystems:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Sum[Length[totm[m]], {m, strnorm[n]}], {n, 0, 5}]
CROSSREFS
The (weakly) normal version is A330655.
The maximum-depth case is A330675.
The case where the atoms are {1..n} is A005121.
The case where the atoms are all 1's is A318813.
The tree version is A330471.
Multiset partitions of strongly normal multisets are A035310.
Sequence in context: A120959 A125797 A068595 * A356615 A037172 A106163
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 27 2019
STATUS
approved