OFFSET
0,5
COMMENTS
As an alternative description, T(n,k) is the number of non-isomorphic multisets of nonempty multisets of nonempty multisets with n leaves whose multiset union consists of k multisets.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..350
EXAMPLE
Triangle begins:
1
0 1
0 2 4
0 3 8 10
0 5 28 38 33
0 7 56 146 152 91
0 11 138 474 786 628 298
For example, row n = 3 counts the following multiset partitions:
{{111}} {{1}{11}} {{1}{1}{1}}
{{112}} {{1}{12}} {{1}{1}{2}}
{{123}} {{1}{23}} {{1}{2}{3}}
{{2}{11}} {{1}}{{1}{1}}
{{1}}{{11}} {{1}}{{1}{2}}
{{1}}{{12}} {{1}}{{2}{3}}
{{1}}{{23}} {{2}}{{1}{1}}
{{2}}{{11}} {{1}}{{1}}{{1}}
{{1}}{{1}}{{2}}
{{1}}{{2}}{{3}}
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))}
M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))}
{ my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 18 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Dec 20 2019
EXTENSIONS
Terms a(36) and beyond from Andrew Howroyd, Jan 18 2023
STATUS
approved