login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079904
Triangle read by rows: T(n, k) = n*k, 0<=k<=n.
4
0, 0, 1, 0, 2, 4, 0, 3, 6, 9, 0, 4, 8, 12, 16, 0, 5, 10, 15, 20, 25, 0, 6, 12, 18, 24, 30, 36, 0, 7, 14, 21, 28, 35, 42, 49, 0, 8, 16, 24, 32, 40, 48, 56, 64, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121
OFFSET
0,5
COMMENTS
T(n, k) = if k=0 then 0 else T(n,k-1)+n;
T(n, 0)=1; T(n, 1)=n for n>0; T(n, 2)=A005843(n) for n>1; T(n, 3)=A008585(n) for n>2; T(n, 4)=A008586(n) for n>3;
T(n, n-2)=A005563(n-1) for n>1; T(n, n-1)=A002378(n-1) for n>0; T(n, n)=A000290(n).
See the comment in A025581 on a problem posed by François Viète (Vieta) 1593, where this triangle is related to A025581 and A257238. - Wolfdieter Lang, May 12 2015
FORMULA
T(n, k) = n*k, 0 <= k <= n.
T(n, k) = (A257238(n, k) - A025581(n, k)^3) / (3*A025581(n, k)). See the Viète comment above. - Wolfdieter Lang, May 12 2015
From Robert Israel, May 12 2015: (Start)
G.f. as triangle: (1 + x*y - 2*x^2*y)*x*y/((1-x)^2*(1-x*y)^3).
G.f. as sequence: -Sum(n >= 0, (n^2-n)*x^(n*(n+1)/2))/(1-x) + Sum(n >= 1, x^(n*(n+1)/2)) * x/(1-x)^2. These sums are related to Jacobi Theta functions.
(End)
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 0 1
2: 0 2 4
3: 0 3 6 9
4: 0 4 8 12 16
5: 0 5 10 15 20 25
6: 0 6 12 18 24 30 36
7: 0 7 14 21 28 35 42 49
8: 0 8 16 24 32 40 48 56 64
9: 0 9 18 27 36 45 54 63 72 81
10: 0 10 20 30 40 50 60 70 80 90 100
... - Wolfdieter Lang, May 12 2015
MAPLE
seq(seq(n*k, k=0..n), n=0..10); # Robert Israel, May 12 2015
CROSSREFS
Cf. A075362 (without column k=0), A025581, A025581.
Sequence in context: A112635 A222757 A004568 * A175630 A021420 A330473
KEYWORD
nonn,easy,tabl
AUTHOR
Reinhard Zumkeller, Feb 21 2003
STATUS
approved