login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079903
a(n) = (9n^4 - 18n^3 + 18n^2 - 9n + 2)/2.
1
1, 28, 190, 703, 1891, 4186, 8128, 14365, 23653, 36856, 54946, 79003, 110215, 149878, 199396, 260281, 334153, 422740, 527878, 651511, 795691, 962578, 1154440, 1373653, 1622701, 1904176, 2220778, 2575315, 2970703, 3409966, 3896236, 4432753, 5022865
OFFSET
1,2
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982; p. 810.
FORMULA
From Harvey P. Dale, Jun 10 2011: (Start)
G.f.: (x*(x*(x+3)*(x+20)+23)+1)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), a(0) = 1, a(1) = 28, a(2) = 190, a(3) = 703, a(4) = 1891. (End)
a(n) = (3*n^2 - 3*n + 1)*(3*n^2 - 3*n + 2)/2. - Bruno Berselli, Jan 28 2017
MATHEMATICA
Table[(9n^4 + 18n^2 + 5)/32, {n, 1, 71, 2}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {1, 28, 190, 703, 1891}, 36] (* Harvey P. Dale, Jun 10 2011 *)
PROG
(PARI) a(n)=(((9*n-18)*n+18)*n-9)*n/2+1 \\ Charles R Greathouse IV, Jun 10 2011
(Magma) [(9*n^4 - 18*n^3 + 18*n^2 - 9*n + 2)/2 : n in [1..40]]; // Wesley Ivan Hurt, Jan 27 2017
CROSSREFS
Sequence in context: A228742 A222967 A263944 * A167581 A135826 A220152
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 21 2003
STATUS
approved