OFFSET
0,4
COMMENTS
See the comments in A025581 and A079904 on a problem by François Viète (Vieta)(1593). Regarding that problem, note the simple identity: n^3 - k^3 = (n - k)^3 + 3*n*k*(n - k), for n > = k >= 0.
Row sums give A126274(n-1) for n >= 1, and 0 for n=0.
Alternating row sums are ars(2*n) = ars(2*n-1) = (4*n-3)*n^2 = A103532(n-1), for n >= 1, and ars(0) = 0.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
FORMULA
T(n, k) = A025581(n, k)*(A025581(n, k)^2 + 3* A079904(n, k)) (see the identity mentioned in a comment).
Columns (with one leading zero and offset 0): k=0: l^3 = A000578(l), k=1: (l+1)^3 - 1 = A068601(l+1), k=2: l*(l^2 + 6*l + 12), k=3: l*(l^2 + 9*l + 27), k=4: l*(l^2 + 12*l + 48), k=5: l*(l^2 + 15*l + 75), ...
G.f. for T(n,k): (1+4*x+4*x*y+x^2-14*x^2*y+x^2*y^2-2*x^3*y-2*x^3*y^2+7*x^4*y^2)*x/((1-x*y)^3*(1-x)^4). - Robert Israel, May 10 2018
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 0
1: 1 0
2: 8 7 0
3: 27 26 19 0
4: 64 63 56 37 0
5 125 124 117 98 61 0
6: 216 215 208 189 152 91 0
7: 343 342 335 316 279 218 127 0
8: 512 511 504 485 448 387 296 169 0
9: 729 728 721 702 665 604 513 386 217 0
10: 1000 999 992 973 936 875 784 657 488 271 0
...
MAPLE
for n from 0 to 10 do seq(n^3-k^3, k=0..n) od; # Robert Israel, May 10 2018
MATHEMATICA
Table[n^3-k^3, {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Jan 02 2021 *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, May 12 2015
STATUS
approved